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Two Big ldeas

“...to investigate the unexplored central region of multicomponent alloy

phase space.” Cantor et al., Mat. Sci. Eng. A, 375-377, 213 (2004).

 Vast opportunity to discover new alloys of scientific and practical benefit

Favor solid solution over intermetallic phases thru configurational entropy
« Vary entropy thru the number and concentrations of principal elements (N = 5)

Yeh et al., Adv. Eng. Mat., 6, 299 (2004). Plus many others...

Both ideas focus on concentrated, multi-component alloys bases
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HEAs and Complex, Concentrated Alloys (CCAS)

Attractive properties are found in alloys with N <5, with
concentrations >35% and in microstructures with more than a
single solid solution phase

Terms such as CCAs and multi-principal element alloys (MPEAS)
further expand the possibilities

Conventional
@

— 5 or more elements
— Nominally single-phase
— High configurational entropy

— May have <5 elements

— Can have >35% of elements
— Can have multiple phases

— Entropy doesn’t matter




-

High temperature metals remain a high im-paét,
long-sought, unsatisfied challenge

“ .. but metal is in the heart of that machine. In all your machines, wherever you
use fire and heat to make things move, there is metal. ”

Orson Scott Card, from “Speaker for the Dead” (1986)
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Common RCCAs and principal element combinations

Common 3 principal elements are (Nb,Ti,Zr), (Mo,Nb,Ti), (Nb,Ti,V)
Common 4 principal elements are (Mo,Nb,Ti,Zr), (Mo,Nb,Ti,V), (Nb,Ti,V,Zr)
The most common RCCAs are

HfNbTaTiZr, MoNbTaW, MoNbTaVW,

NbTiVZr and AIMo,:NbTa, -TiZr
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Number and types of RCCA phases £ 60 -
1-phase BCC microstructures comprise 54% of RCCAs €
* Most (57) contain only elements from subgroups IV-VI, but 24 220 1
contain Al, which stabilizes BCC structure in Hf, Ti and Zr 0 . . N ,
2-phase microstructures give 39% of RCCAs 1Num§er y s’hases“
« The matrix phase is BCC (48 alloys), B2 (8 alloys) or FCC (3 alloys) o T
3- and 4-phase alloys give 7% of RCCAs 1, & W4 phases
Disordered BCC is the most common phase R & S
Laves (C14 or C15) is the 2" most common 5 *’:ﬂfsgz m 1 phase
» Laves is always associated with Cr, Mo and Zr, and/or a 32 P
combination of Al, V and Zr LaBVCeE

B2 often gives an RCCA ‘superalloy’ microstructure

0 20 40 60 80
° The main elements are A|1 Nb1 Ta and Zr INVITED REVIEW Number of Instances

Development and exploration of refractory high entropy alloys—A
review

THE AIR FORCE RESEARCH LABORATORY
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HEA Property Comparison

RHEAs offer potential for HEAs and CCAs it slen s

iImproved high temperature 20| B b HASTELLOY X, HS 188, Haynes HR-1
. OBCC+B2 O BCC+2™¢ N-155, Mar-M247

strength and specific strength

relative to superalloys and

conventional refractory alloys
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Refractory CCA Superalloys (RSAS)

Two-phase BCC+B2 alloys with atomically coherent, nanometer sized
particles are similar to y/y superalloy microstructures

« B2 is typically the continuous phase but the microstructure can be inverted

* RSAs are among the highest strength RCCAs and also have improved oxidation resistance

* RSAs include AlMoy gNbTa, s TiZr; Alg sNbTaTiy 4,Zr, 5. AlggNbTag gTiy 5V 21, Aly sMog sNbTag s TIZr
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High Entropy Ceramics

Ordered compounds with ionic/covalent bonding

MPEAs are an alloying approach, not a family of alloys, so CCAs include
other inorganic materials

The MPEA field includes ceramic materials such as oxides/ borides/
nitrides/ carbides
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Figure 6 | Binary metallic compared with a ternary oxide. A schematic

E n t I'O p y- St a b I I i Z ed O X i d eS representation of two lattices illustrating how the first-near-neighbour

environments between species having different electronegativity (the

Christina M. Rost', Edward Sachet!, Trent Borman!, Ali Moballegh', Elizabeth C. Dickey', Dong Hou', darker the more nsgative charge localized) for (@)'a randoim binary metal
alloy and (b) a random pseudo-binary mixed oxide. In the latter, near-

1 2 i1
Jacob L. Jones, Stefano Curtarolo® & Jon-Paul Maria neighbour cations are interrupted by intermediate common anions.
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Environmental resistance
Four degradation mechanisms

Solid solution interstitial hardening and embrittlement

« Rapid bulk diffusion produces thick, brittle surface layers in some refractory metals/alloys
(alpha case in titanium alloys)

re Degrees Centigrade
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Complex, concentrated alloys (CCAS)

How are they different?

Exceptional oxidation resistance in
refractory CCAs

e Parabolic kinetics that 100 times slower than
conventional refractory alloys

120
CrNb Tin N§100
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High temperature oxidation behaviors of equimolar NbTiZrV and ®Cmm
NbTiZrCr refractory complex concentrated alloys (RCCAs)
T.M. Butler **, KJ. Chaput *, J.R. Dietrich °, O.N. Senkov *:"
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Brittle to ductile transition (BDT)

Competition between yield and fracture

In BCC metals, fracture stress (oy) is relatively insensitive to T but yield
stress (o,) depends strongly on T
* A brittle-to-ductile transition temperature (Tzp7) exists, below which fracture precedes bulk

plaStIC defOI’matIOI’] A. Kelly, W.R. Tyson and A.H. Cottrell;
. . “Theoretical Strength of Crystals and
* Increasing o; and decreasing o, decreasesTgpy the Tip of a Crack’, Canadian J. Phys.,
45, 883-886 (1967).

Other parameters also decrease Tgpt
* Increasing elastic modulus or surface energy

» Decreasing shear modulus or lattice constant
« Decreasing grain size

STRESS

Designing RCCAs with these approaches
may give Tgpr < RT

TB DT

THE AIR FORCE RESEARCH LABORATORY TEMPERATURE
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Large number of alloy systems

CCAs offer a cosmically vast number of new alloy bases to explore

New strategies & tools can accelerate development by synergizing hi
throughput computations & experiments

« CALPHAD calculations can significantly accelerate exploration but thermodynamic
databases for refractory elements need improvement

« High throughput experiments are needed, especially for environmental resistance and
tensile ductility

CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry 50 (2015) 32-48 Scripta Materialia 127 (2017) 195-200

f
Eii

Contents lists available at ScienceDirect

CALPHAD: Computer Coupling of Phase Diagrams and ‘m f

Contents lists available at ScienceDirect
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Thermochemistry Scripta Materialia

journal homepage: www.elsevier.com/locate/calphad = &)

journal homepage: www.elsevier.com/locate/scriptamat

Accelerated exploration of multi-principal element alloys for structural @ S Viewpoint Article

applications New strategies and tests to accelerate discovery and development of @mssm
O.N. Senkov*® ].D. Miller, D.B. Miracle, C. Woodward multi-principal element structural alloys

Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB. OH 45433, USA

Daniel Miracle **, Bhaskar Majumdar ®, Katelun Wertz 2, Stéphane Gorsse ©4¢
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Refractory metals, conventional high temperature alloy elements (Co, Ni)
and compound-forming elements (Al, Si, C, N...)

May also consider elements with high T, and low cost, density (B, Fe, Y...)
This palette gives ‘only’ 43,605 bases with 3-6 principal elements
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New strategies are being proposed

Simplify by separating composition, | New Ehaacterization Strategy
microstructure evaluations

. _ Stage 0
Evaluations that reject the largest ~Hi throughput computations
number of alloys with the smallest Stage 1

—Microstructure-insensitive properties
—Environmental resistance, T,
—Modulus, density, thermal properties

Stage 2

—Microstructure-sensitive iroierties

Scripta Materialia

effort are done first
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Viewpoint Article

New strategies and tests to accelerate discovery and development of @ sssssss ik
multi-principal element structural alloys

Structure-Sensitive Properties

Daniel Miracle **, Bhaskar Majumdar ”, Katelun Wertz ?, Stéphane Gorsse %€
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High throughput experiments

Don’t exist for structural materials due to microstructure, length scale issues
» Tensile properties and environmental resistance are top priorities

New approaches for materials libraries are needed
« Graded composition, graded microstructure and ‘materials on demand’ (candy dot)
« Bulk-like libraries (not thin films) for mechanical properties
« Emerging capabilities may make these feasible

22222
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Back to the Future — Fundamental data

collected more than 50 years ago

« Thermodynamic data and phase equilibria

Phase transformations and phase stability

Defects and defect energies (point, line, planar)

Diffusion data and kinetic models

Deformation mechanisms under different loading conditions
... and the influence of composition on the properties above!

These data typically describe alloys with a single dominant solvent
It has become difficult to fund research collecting fundamental data

The materials community must once again embrace the collection of
fundamental data, especially in concentrated alloys

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR
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Back to the Future — Materials screening iR

Materials screening used to be an important tool in materials research, but

NOWw...
* Funding agencies view screening as applied work, or mere phenomenology
« Many researchers avoid screening due to lower accuracy than more time-consuming methods

Screening allows researchers to quickly focus their efforts on materials that
are most likely to have a significant impact on society!

We need to re-invigorate screening as an essential tool in basic science

« Better targets R&D resources to develop the most impactful knowledge
« Current R&D methods have inherent risks that are usually ignored

Imagine a 1 hour test with 100 questions...
Is it better to spend all your time on 1 question and be 99% sure of the answer...

...or would you rather be 70% sure of your answers for all 100 questions?
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Closing remarks

HEAs/ CCAs change a 5,000 yr paradigm for developing materials

HEAs/ CCAs offer new challenges from vastness and new physical
ohenomena

Refractory CCAs offer significant promise but also three major
technical challenges:

« environmental resistance (four distinct mechanisms)
* Dbrittle-to-ductile transition (common to all BCC alloys)
* large number of new alloy bases to explore

New high throughput strategies and tests are needed (back to the
future)
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